

Who is ILSA GROUP?

- ILSA has been founded in 1979 by a pool of Italian entrepreneurs, skilled on stainless steel and refrigeration manufacturing, becoming rapidly a leader company in:
 - Refrigeration
 - Stainless steel equipment
- 2004 ILSA acquired DESCO, an old Italian company specialised in cooking equipment

ILSA GROUP 2009

ILSA GROUP 2018

CERTIFICATES

REFRIGERATION

REFRIGERATED CABINETS

MONOBLOC UNIT

- <u>TROPICALIZED UNIT</u> FOR TEMPERATURES UP TO +43°C – CERTIFIED FROM IMQ
- AUTOMATIC HOT GAS
 DEFROSTING
- AUTOMATIC HOT GAS
 EVAPORATION OF CONDENSE
 WATER
- SERVICE FRENDLY POSSIBILITY TO CHANGE THE UNIT IN A FEW MINUTES – ONLY 6 SCREWS
- GAS R290A AS PER NEW
 EUROPEAN REGULATIONS
- LOWNOISE LEVEL: ONLY 49 dB

AIR CIRCULATION

- FORCED AIR CIRCULATION ENSURES
 UNIFORMITY OF TEMPERATURE IN EVERY
 PART OF THE CELL
- EVAPORATOR AND FANS ARE SEPARATED AND NOT INSIDE THE CELL (=LARGER CELL ROOM), SO THAT NO ACCIDENTAL OPERATION CAN DAMAGE OR OBSTRUCT THEM

INSIDE VOLUME

INSIDE VOLUME

ESSENTIAL

• GN 2/1 ENTRY LEVEL AVAILABLE IN:

- 700 Lt. 0/+10°C
- 700 Lt. -2/+8°C
- 700 Lt. -20/-10°C
- AISI 304 or 430 OUTSIDE
- COMPACT SIZE 720x800x1955mm

NEOS & EVOLVE

- GN 2/1
- 700 & 1400 Lt.
- AVAILABLE OUTSIDE IN AISI 304, 430 OR PPS
- INSULATION THICKNESS = 85mm
- 3 CHAMBER GASKETS REPLACEABLE WITHOUT ANY
 TOOL
- LOCK
- REMOTE UNITS AVAILABLE
- REMOVABLE FILTER IN
 FRONT OF CONDENSER

NEOS & EVOLVE

TOP ENERGY EFFICIENCY CLASS RATINGS

ТҮРЕ	NEOS	EVOLVE		
700 0/+10 °C	A OR B	-		
700 -2/+8 °C	A OR B	А		
700 -20/-10 °C	С	В		
1400 0/+10 °C	С	-		
1400 -2/+8 °C	С	В		
1400 -20/-10 °C	D	С		

IN CLIMATE CLASS 5

Classe climatica della sala prove Climate class of the test room Classe climatique du laboratoire Klimaklasse des Proberaums	Temperatura a bulbo secco °C Dry bulb temperature °C Température à bulbe sec °C Trockenkugel- temperatur°C	Umidità relativa % <i>Relative humidity %</i> <i>Humidité relative %</i> <i>Relative</i> <i>Feuchtigkeit %</i>
3	25	60
4	30	55
5	40	40

NEOS & EVOLVE

ENERGY EFFICIENCY FEATURES:

- OPTIMIZED AIR FLOW
- INSULATION THICKNESS 85 mm
- 3 CHAMBER INSULATED GASKETS
- HOT GAS CONDENS-WATER EVAPORATION
- HOT GAS DEFROSTING
- MONOBLOC SYSTEM WITH LOW ENERGY RUNNING COMPRESSORS AND FANS
- BETTER ENERGY PERFORMANCE GAS R290A

NEOS - RANGE

NEOS - RANGE

BAKERY CABINETS FOR TRAYS DIM. 60X40 AND 60X80

ROLL-IN CABINETS

ICE CREAM CABINETS

EVOLVE

- NEOS + :
 - ATTRACTIVE DESIGN WITH ROUNDED EDGES
 - LONG STRIP HANDLE WITH RIGHT OR LEFT SIDE GRIP
 - HACCP TOUCH CONTROLLER
 - LED LIGHT
 - IQ ELECTRONIC FANS ALLOWING LOW ENERGY CONSUMPTION
 - AUTOMATIC DEFROSTING WITH INTERNAL PROBE
 - AISI 304 RACKS AND SLIDES
 - BETTER ENERGY EFFICIENCY CLASSES

EVOLVE - RANGE

BAKERY CABINETS FOR TRAYS 60X40 AND 60X80

CHOCOLATE CABINET 60X80 WITH ACCURATE HUMIDITY CONTROL

RETARDER PROVER WITH TOUCH CONTROLLER FOR TRAYS 60X40 AND 60X80

DRY AGE / SEASONER CABINET

NEOS & EVOLVE - RANGE

BOTH CABINETS AVAILABLE WITH **PRESSED SIDE PANELS**:

- NO NEED OF RACKS
- NO NEED OF SLIDES
- <u>100% HYGENIC</u> BY EASIER AND MORE ACCURATE CLEANING

ACCESSORIES

DIFFERENT ACCESSORIES AVAILABLE UPON REQUEST TO FACILITATE THE DAILY USE

SLIDES FOR GN 1/1 AND GN 2/1 CONTAINERS

FOOT PEDAL

WHEELS

REFRIGERATED COUNTERS

- NEOS - EVOLVE

DETAILS

- 600, 700, 800mm DEPTH
- ELECTRONIC CONTROLLER
- 1 2 3 4 DOORS GN 1/1
- DRAWERS 2x1/2 3x1/3 1x1/3+1x2/3
- POSITIVE TEMPERATURE -2/+8°C
- NEGATIVE TEMPERATURE -20/-10°C
- REPLACEABLE GASKETS WITHOUT ANY
 TOOLS

TECHNOLOGY

- INSULATION THICKNESS 60mm
- FORCED AIR VENTILATION BY PATENTED REAR VENTILATION CHANNEL, ENSURING THE SAME TEMPERATURE INSIDE THE WHOLE CELL
- NOT VISIBLE EVAPORATOR, SEPARATED FROM THE CELL
- AUTOMATIC DEFROSTING
- HOT GAS RE-EVAPORATION OF THE CONDENSE WATER
- CONDENSING UNIT WITH FRONT EXTRACTION
- ERGONOMIC HANDLES
- GAS **R290A**

ENERGY RATINGS

TOP ENERGY EFFICIENCY CLASS RATINGS

ТҮРЕ	START	ELITE
1 DOOR	В	В
2 DOORS	А	А
3 DOORS	А	А
4 DOORS	А	А

IN CLIMATE CLASS 5

Classe climatica della sala prove Climate class of the test room Classe climatique du laboratoire Klimaklasse des Proberaums	Temperatura a bulbo secco °C Dry bulb temperature °C Température à bulbe sec °C Trockenkugel- temperatur°C	Umidità relativa % Relative humidity % Humidité relative % Relative Feuchtigkeit %
3	25	60
4	30	55
5	40	40

AIR CIRCULATION

- AIR IS SUCKED FROM THE
 EVAPORATOR AND THANKS TO A
 CHANNEL ON THE BACKSIDE,
 DISTRIBUTED INSIDE THE TABLE.
- A <u>UNIFORM TEMPERATURE</u> INSIDE THE TABLE IS ACHIEVED, WHEREAS
 COMPETITORS' PRODUCTS ARE
 COLDER ON THE EVAPORATOR'S
 SIDE AND OTTER ON THE
 OPPOSITE SIDE OF THE CELL

AIR CIRCULATION - COMPETITOR

 AIR FLOWING IS STOPPED OR LIMITED BY DRAWERS, BOXES, FOOD OR OTHER
 STUFF BECAUSE IS COMING
 SOLELY FROM ONE SIDE

HYGIENE

- INSIDE COMPLETELY IN AISI 304 WITH RADIUSED
 EDGES THAT ENABLE AN EASY CLEANING
- GASKETS WITH EASY CLEANABLE PROFILE

VERSATILITY

 INTERCHANGEABILITY DOORS WITH DRAWERS - ALSO BY CUSTOMER INSTALLED COUNTER

DRAWERS WITH FULL EXTRACTION

 DRAWERS ALLOWS TO HOLD GN 1/1 CONTAINERS

TECHNICAL COMPARTMENT ON REQUEST RIGHT OR LEFT

BLAST CHILLER & FREEZER

BLAST CHILLER & FREEZER MODELS

NEOS

EVOLVE

BLAST CHILLER & FREEZER MODELS

NEOS 4 GN 1/1 5 GN 1/1 or 60x40 10 GN 1/1 or 60x40 14 GN 1/1 or 60x40

EVOLVE 5 GN 1/1 or 60x40 6 GN 1/1 or 60X40 10 GN 1/1 or 60x40 10R GN 1/1 or 60x40 10 GN 2/1 or 60x80 14 GN 1/1 or 60x40 20 GN 1/1 or 60x40 20 GN 2/1 or 60x80

BLAST CHILLER & FREEZER MODELS

THE EVOLVE RANGE IS ALSO AVAILABLE:

- FOR ICE CREAM (DEDICATED RANGE)
- FOR PASTRY (DEDICATED RANGE)
- WITH WATER-COOLED ENGINE
- FOR REMOTE INSTALLATIONS
- FOR CO2 INSTALLATIONS

COMPRESSORS

SEMI-HERMETIC

The compressor itself and the motor are housed in the same casing, which is designed to be opened for inspection and servicing. Semi-hermetic compressors are made in such a way as to avoid air or dust from entering the mechanisms.

EVOLVE 10 T 10 T 2/1 14 T 20 T 40 T

HERMETIC

when the casing is welded and sealed and the cylinder heads cannot be accessed for inspection or maintenance. **NEOS**

4 T 5 T 10 T 14 T EVOLVE 5 T TABLE

COMPRESSORS

ADVANTAGES SEMI-HERMETIC COMPRESSORS:

- MORE CAPACITY
- LESSER NOISE
- HIGHER EFFICIENCY
- OPERATING RANGE
- LONGER LIFE TIME
- ONLY 1.500 RPM (REVOLUTION PER MINUTE)
 INSTEAD OF 3.000 RPM

PERFORMANCES

THE PERFORMANCE OR REFRIGERATION YIELD OR REFRIGERATION CAPACITY OR REFRIGERANT POWER

DEPENDS FROM:

- EVAPORATING TEMPERATURE
- CONDENSING TEMPERATURE

ATTENTION ! ELECTRICAL POWER ≠ PERFORMANCE

ABSORBED POWER ≠ PERFORMANCE

Gram Commercial A/S Aage Grams Vej 1, DK-6500 Vojens T: +45 73 20 12 20 F: +45 73 20 12 01 info@gram-commercial.dk

Innovativ og funktionel opbevaring af fødevarer www.gram-commercial.com

Intuitive and easy-to-use control panel

The bright LCD control panel is easy to read. The encoder wheel makes navigation intuitively easy. The cabinets are fitted with an internal bottom tray with drain. Smooth surfaces and watertight internal rounded corners make cleaning easy. Removable support for 1/1 GN and 400 x 800 mm bakery plates.

Blast chiller		1		1	1		
Blast chiller/freezer			1			1	1
Exterior/Interior	Stainless/Stainless	1	1	1	1	1	1
Compatible with oven rack	Rational oven rack type 101				1		1
Defrosting	Air	1	1	1	1	1	1
	Right hand hinged door, reversible and selfclosing			۲	0	0	٠
Exterior equipment	Right hand hinged door, reversible		0				
	Left hand hinged door	0	0	0	0	0	0
	Legs (H=73/103 mm)		0				
	Legs (H=105/155 mm)			0	•	0	0
	IFR control system			0			٥
	Multipoint probe with 3 measuring points		0	۲	0		0
Interior equipment	Removable support for 1/1 GN and 400 x 600 mm		0		0		0
	Max. number of 1/1 GN 40 mm deep	5	6	10	10	10	10
	Cabinet fitted with an internal bottom tray		٥		0	۲	
Prepared for remote refriger	alion system			0	O.	O	0

C = blast chiller CR = blast chiller compatible with Rational oven rack type 101 CF = blast chiller, prepared for remote refrigeration system

IFR - Intelligent Food Recognition

Using the IFR function you only need to insert the multipoint probe and start the chilling cycle. The cycle then automatically adapts to the food item's characteristics.

Temperature control modes

The chill/freeze cycle can be controlled by time or temperature. If the probe is not inserted into the core a time cycle will be activated automatically.

	KPS 21 C KPS 21 S K			KPS 42 C	KPS 42 CF	KPS 42 5	KPS 42 SF	
With compressor		1	1	1		1		
Prepared for remote refrigeration system				1		1		
remperature range	C°.	0/+10	-25/+10	0/+10	. 10	-25/+10	-25/+10	
Ref. capacity at -10/+-45°C	45°C Watt 1096	94 - E	2631	2700		÷.		
Ref. capacity at -25/+45°C	Watt	Watt -	870		16	2528	2600	
Connection	V/Hz	230/50	230/50	400/50	22.w50	400/50	230/50	
Connection read	Watt	1000	1400	2200	274	4000	300	
Climate class		4	4	4	4	4	4	
Refrigerant				R4	04A			
Insulation, cyclopentane mm		55	55	75	75	75	75	
Weight, packed Kg		130	125	225	185	225	185	

Technical specifications		KPS 21 C	KPS 21 S	KPS 42	
With compressor		1	1	1	
Prepared for remote refrigeration system					
Temperature range	C°	0/+10	-25/+10	0/+10	
Ref. capacity at -10/+45°C	Watt	1096	6	2631	
Ref. capacity at -25/+45°C	Watt		870	- 22	
Connection	V/Hz	230/50	230/50	400/5	
Connection load	Watt	1000	1400	2200	
Climate class		4	4	-4	
Refrigerant					
Insulation, cyclopentane	mm	55	55	75	
Weight, packed	Kg	130	125	225	

PERFORMANCE = 870 W (evap. -25 / cond. +45°C)

COMPRESSOR TECHNICAL DATA

D - PERFORMANCE - CHECK POINT DATA

TEST CONDITIONS: @220V50Hz			ASHRAELBP3 Fan	2	Evaporating ten (Condensing te	nperature emperature	-23,3°C (-9,94°F) 54,4°C (129.92°F))	
С	Power consumption Current consumption Gas flow rate EFFICIENCY RA +/- 5% +/- 5% +/- 5% +/- 7%				E			
[Btu/h]	[kcal/h]	[W]	[W]	[A]	[kg/h]	[Btu/Wh]	[kcal/Wh]	[W/W]
3190 804 935			749	4.66	21.63	4.26	1.07	1.25

E - PERFORMANCE - CURVES

@220V50	ST CONDITIONS: ASHRAE32					(C	ondensing te	mperature 3	5°C (+95°F))	
Evaporating temperature		Cooling capacity +/- 5%			Power consumption +/- 5%	Current consumption +/- 5%	Gas flow rate +/- 5%	EFFICIENCY RATE +/-7%		
°C	(°F)	[Btu/h]	[kcal/h]	[W]	[W]	[A]	[kg/h]	[Btu/Wh]	[kcal/Wh]	[W/W]
-40	(-40)	1413	356	414	437	3,71	9,50	3,24	0.82	0,95
-35	(-31)	2000	504	586	509	3.91	13.49	3,92	0,99	1.15
-30	(-22)	2674	674	784	578	4,12	18.09	4.61	1.16	1.35
-25	(-13)	3432	865	1006	648	4.35	23.32	5.30	1.33	1.55
-20	(- 4)	4270	1076	1251	717	4,59	29,16	5,96	1,50	1,75
-15	(+ 5)	5185	1307	1519	789	4.85	35,62	6,58	1.66	1,93
-10	(+14)	6173	1555	1809	863	5.13	42.70	7.15	1.80	2.10

TEST CON @220V50	DITIONS: Hz		ASH Fan	IRAE32		(Condensing temperature 45°C (+113°F))					
Evaporating temperature		Cooling capacity +/- 5%			Power consumption +/- 5%	Current consumption +/- 5%	Gas flow rate +/- 5%	EFFICIENCY RATE +/- 7%			
°C	(°F)	[Btu/h]	[kcal/h]	[W]	[W]	[A]	[kg/h]	[Btu/Wh]	[kcal/Wh]	[W/W]	
-40	(-40)	1285	324	377	437	3,70	8,62	2,95	0,74	0,86	
-35	(-31)	1815	457	532	518	3.92	12.21	3.50	0.88	1.03	
-30	(-22)	2450	618	718	600	4.16	16.55	4.08	1.03	1.20	
-25	(-13)	3189	804	935	684	4,44	21,63	4,66	1,17	1.37	
-20	(- 4)	4028	1015	1180	770	4.75	27.45	5,23	1,32	1.53	
-15	(+ 5)	4962	1250	1454	859	5.09	34.02	5.78	1.46	1.69	
-10	(+14)	5988	1509	1755	954	5.46	41.34	6.28	1.58	1.84	

TEST 0 @220	TEST CONDITIONS: @220V50Hz			ASI Fan	IRAE32		(Condensing temperature 55°C (+131°F))						
E	Evaporating temperature		Cooling capacity +/- 5%			Power consumption +/- 5%	Current consumption +/- 5%	Gas flow rate +/- 5%	EFFICIENCY RATE +/- 7%				
	°C	(°F)	[Btu/h]	[kcal/h]	[W]	[W]	[A]	[kg/h]	[Btu/Wh]	[kcal/Wh]	[W/W]		
-	40	(-40)	1143	288	335	427	3,69	7,65	2.67	0.67	0.78		
-	35	(-31)	1610	406	472	519	3.93	10.82	3.12	0.79	0.91		
	30	(-22)	2203	555	646	614	4.21	14.85	3.60	0.91	1.05		
-	25	(-13)	2919	736	855	712	4.54	19.75	4.10	1.03	1.20		
	20	(- 4)	3753	946	1100	816	4,91	25.53	4,60	1.16	1.35		
-	15	(+ 5)	4702	1185	1378	925	5.33	32.18	5.08	1.28	1.49		
-	10	(+14)	5763	1452	1689	1041	5.80	39.70	5.53	1.39	1.62		

COMPRESSOR DATA SHEET ILSA EVOLVE 5 TRAYS

COMPRESSORS DATA SHEET

TEST CON @220V50	T CONDITIONS: ASHRAE32 (Condensing temperature 45°C)+113°F) 220V50Hz Fan))				
Evaporating temperature		Cooling capacity			Power consumption	Current consumption	Gas flow rate	EFF	EFFICIENCY RATE		
°C	(°F)	[Btu/h]	[kcal/h]	[W]	[W]	[A]	[kg/h]	[Btu/Wh]	[kcal/Wh]	[W/W]	
-40	(-40)	1285	324	377	437	3.70	8.62	2.95	0.74	0.86	
-35	(-31)	1815	457	532	518	3.92	12.21	3.50	0.88	1.03	
-30	(-22)	2450	618	718	600	4.16	16.55	4.08	1.03	1.20	
-25	(-13)	3189	804	935	684	4.44	21.63	4.66	1.17	1.37	
-20	(- 4)	4028	1015	1180	770	4.75	27.45	5.23	1.32	1.53	
-15	(+ 5)	4962	1250	1454	859	5.09	34.02	5.78	1.46	1.69	
-10	(+14)	5988	1509	1755	954	5.46	41.34	6.28	1.58	1.84	

PERFORMANCE = 935 W (evap. -25 / cond. +45°C)

MORE THAN GRAM

				AIR CONDENSER				
MultiFresh	®	IRINOX				230V	230V	200V 2+PE
monnresn				Model / Voltage		1N+PE	1N+PE	208V 2+PE
						50Hz	60Hz	50/60Hz
More than Fresh.				Total rating	KW	1,2	1,3	1,3 / 1,3
				Total output	Α	6,5	6,3	6,5 / 6,4
		MF 25.1		Supply cable size	mm ²	3G1,5	3G1,5	3G1,5
		INIT ESTI		Compressor rating	KW (HP)	0,36	0,36	0,36
				Refrigeration Yield (-10/40°C)	W	1727	1623	1623
				Condensator rating (-10/40°C)	W	2683	2549	2549
				Gas type / Nominal gas charge			R404A / 1,8K	1
1		Organize your production and processes with flexibility		Minimum air circulation	m³/h	1100	1210	1100/1210
	*			Maximum ambient air temperature	°C		32	
			Cabinet dimension (WxDxH)	mm		790x771x870)	
		24 hours a day.		Cabinet weight	Kg		-	
l						measure	ement in m	illimeters
					[RIN@	X
					[Mod.: MF	0510001	
						Ed.: 05	/13	
					[Rev.: 00		MYA
YIELD PER CYCLE		DIMENSIONS						
from +90°C to +3°C	25 kg	width	790 mm					
from +90°C to -18°C	25 kg	depth 771 mm PERFORMANC				= 1.7	'27 W	
		height	870 mm		_	_		
TRAY CAPACITY NR.		weight	115 kg	(evap10 / co	nd.	+40°	'C)	
tray height 65/60 mm 4 (GN 1/	1 o 600x400 mm)						- /	

tray height 40 mm tray height 20 mm 5 (GN 1/1 o 600x400 mm) ELECTRICAL DATA 8 (GN 1/1 o 600x400 mm) (max absorbed power max absorbed current voltage

230 V-50Hz (1N+PE)

1,2 kW

EST CONDITIONS: @220V50Hz		ASI Far	HRAE32		(Condensing temperature 35°C (+95°F))				
Evaporating	Co	oling capa	city	Power consumption	Current consumption	Gas flow rate	EFF	ICIENCY R	ATE
temperature		+/- 5%		+/- 5%	+/- 5%	+/- 5%		+/- 7%	
°C (°F)	[Btu/h]	[kcal/h]	[W]	[W]	[A]	[kg/h]	[Btu/Wh]	[kcal/Wh]	[W/W]
-40 (-40)	1413	356	414	437	3.71	9.50	3.24	0.82	0.95
-35 (-31)	2000	504	586	509	3.91	13.49	3.92	0.99	1.15
-30 (-22)	2674	674	784	578	4.12	18.09	4.61	1.16	1.3
-25 (-13)	3432	865	1006	648	4.35	23.32	5.30	1.33	1.5
00 / 11	4270	1076	1251	717	4.59	29.16	5.96	1.50	1.7
-20 (- 4)				700	4 05	25 62	6 58	1 66	19
-20 (- 4)	5185	1307	1519	109	4.00	55.02	0.00	1.00	1.0
-20 (- 4) -15 (+ 5) -10 (+14)	5185 6173	1307 1555	1519	863	4.85 5.13	42.70	7.15	1.80	2.10
-20 (- 4) -15 (+ 5) -10 (+14) TEST CONDITIONS @220V50Hz	5185 6173	1307 1555 AS Fai	1519 1809 HRAE32	863	4.65 5.13 (C	42.70 ondensing te	7.15	1.80 1.80	2.1
-20 (- 4) -15 (+ 5) -10 (+14) TEST CONDITIONS @220V50Hz Evaporating temperature	5185 6173 Co	1307 1555 AS Fai poling capa	1519 1809 HRAE32 n	Power consumption	4.05 5.13 (C Current consumption	42.70 ondensing te Gas flow rate	7.15	1.80 1.80 (+113°F	2.1))) ATE
-20 (- 4) -15 (+ 5) (+14) TEST CONDITIONS @220V50Hz Evaporating temperature	5185 6173	1307 1555 AS Fai coling capa +/- 5%	1519 1809 HRAE32 n city	Power consumption +/- 5%	Current consumption +/- 5%	42.70 ondensing te Gas flow rate +/- 5%	7.15	1.80 1.80 (+113°F ICIENCY R +/- 7%	2.1
-20 (- 4) -15 (+ 5) -10 (+14) TEST CONDITIONS @220V50Hz Evaporating temperature °C (°F)	5185 6173 Co	1307 1555 AS Fai coling capa +/- 5% [kcal/h]	1519 1809 HRAE32 n city	Power consumption +/- 5% [W]	4.05 5.13 (C Current consumption +/- 5% [A]	42.70 ondensing te Gas flow rate +/- 5% [kg/h]	7.15 mperature EFF [Btu/Wh]	1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80	2.10))) ATE
-20 (- 4) -15 (+ 5) (+14) TEST CONDITIONS @220V50Hz Evaporating temperature °C (°F) -40 (-40)	5185 6173 Co [Btu/h] 1285	1307 1555 AS Fai ooling capa +/- 5% [kcal/h] 324	1519 1809 HRAE32 n city [W] 377	Power consumption +/- 5% [W] 437	4.05 5.13 (C Current consumption +/- 5% [A] 3.70	Gas flow rate +/- 5% [kg/h] 8.62	EFF	1.80 1.80 1.80 (+113°F ICIENCY R +/- 7% [kcal/Wh] 0.74	2.1)) ATE
-20 (- 4) -15 (+ 5) -10 (+14) TEST CONDITIONS @220V50Hz Evaporating temperature °C (°F) -40 (-40) -35 (-31)	5185 6173 Co [Btu/h] 1285 1815	1307 1555 AS Fai ooling capa +/- 5% [kcal/h] 324 457	1519 1809 HRAE32 n city [W] 377 532	Power consumption +/- 5% [W] 437 518	4.65 5.13 (C Current consumption +/- 5% [A] 3.70 3.92	33.02 42.70 ondensing te Gas flow rate +/- 5% [kg/h] 8.62 12.21	0.30 7.15 mperature EFF [Btu/Wh] 2.95 3.50	1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80	2.1)) ATE [W/W] 0.8 1.0
-20 (- 4) -15 (+ 5) (+14) TEST CONDITIONS @220V50Hz Evaporating temperature °C (°F) -40 (-40) -35 (-31) -30 (-22)	5185 6173 Co [Btu/h] 1285 1815 2450	1307 1555 AS Fai ooling capa +/- 5% [kcal/h] 324 457 618	1519 1809 HRAE32 n city [W] 377 532 718	Power consumption +/- 5% [W] 437 518 600	4.65 5.13 (C Current consumption +/- 5% [A] 3.70 3.92 4.16	Gas flow rate +/- 5% [kg/h] 8.62 12.21 16.55	0.30 7.15 mperature 4 EFF [Btu/Wh] 2.95 3.50 4.08	1.80 1.80 1.80 1.80 1.03 1.80 1.03	2.1)) ATE [W/W] 0.8 1.0 1.2
-20 (- 4) -15 (+ 5) -10 (+14) TEST CONDITIONS @220V50Hz Evaporating temperature °C (°F) -40 (-40) -35 (-31) -30 (-22) -25 (-13)	5185 6173 Co [Btu/h] 1285 1815 2450 3189	1307 1555 AS Fai ooling capa +/- 5% [kcal/h] 324 457 618 804	1519 1809 HRAE32 n city [W] 377 532 718 935	Power consumption +/- 5% [W] 437 518 600 684	4.05 5.13 (C Current consumption +/- 5% [A] 3.70 3.92 4.16 4.44	Gas flow rate +/- 5% [kg/h] 8.62 12.21 16.55 21.63	0.30 7.15 mperature EFF [Btu/Wh] 2.95 3.50 4.08 4.66	1.80 1.00 1.80 1.00	2.1 2.1 ATE [W/W] 0.8 1.0 1.2 1.3
-20 (- 4) -15 (+ 5) -10 (+14) TEST CONDITIONS @220V50Hz Evaporating temperature °C (°F) -40 (-40) -35 (-31) -30 (-22) -25 (-13) -20 (- 4)	5185 6173 Co [Btu/h] 1285 1815 2450 3189 4028	1307 1555 AS Fai ooling capa +/- 5% [kcal/h] 324 457 618 804 1015	1519 1809 HRAE32 n city [W] 377 532 718 935 1180	Power consumption +/- 5% [W] 437 518 600 684 770	4.65 5.13 (C Current consumption +/- 5% [A] 3.70 3.92 4.16 4.44 4.75	33.02 42.70 ondensing te Gas flow rate +/- 5% [kg/h] 8.62 12.21 16.55 21.63 27.45	EFF [Btu/Wh] 2.95 3.50 4.08 4.66 5.23	1.80 1.03 1.17 1.32	2.1 2.1)) ATE [W/W] 0.8 1.0 1.2 1.3 1.5
-20 (- 4) -15 (+ 5) -10 (+14) TEST CONDITIONS @220V50Hz Evaporating temperature °C (°F) -40 (-40) -35 (-31) -30 (-22) -25 (-13) -20 (- 4) -15 (+ 5)	5185 6173 Co [Btu/h] 1285 1815 2450 3189 4028 4962	1307 1555 AS Fai ooling capa +/- 5% [kcal/h] 324 457 618 804 1015 1250	1519 1809 HRAE32 n city [W] 377 532 718 935 1180 1454	Power consumption +/- 5% [W] 437 518 600 684 770 859	4.65 5.13 (C Current consumption +/- 5% [A] 3.70 3.92 4.16 4.44 4.75 5.09	33.02 42.70 ondensing te Gas flow rate +/- 5% [kg/h] 8.62 12.21 16.55 21.63 27.45 34.02	EFF [Btu/Wh] 2.95 3.50 4.08 4.66 5.23 5.78	1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.13°F 1.13°F 1.03 1.03 1.17 1.32 1.46	(W/W) ATE [W/W] 0.8 1.0 1.2 1.3 1.5 1.6

PERFORMANCE = 1.809 W (evap. -10 / cond. +35°C) **PERFORMANCE** = 1.755 W (evap. -10 / cond. +45°C)

SO WITH EVAP. +40°C THE PERFORMANCE IS BETWEEN 1.755 – 1.809 W

ABBATTITORE DI TEMPERATURA-BLAST FREEZER PENTAVALENTE-5 FUNCTION

Mod. **F506TS**

MODEL:		F506TS
Dimensions (W x D x H) Dimensioni (L x P x A)	mm	790 x 720 x 850
Door opening width Larghezza luce porta	mm	670
Door opening height Altezza luce porta	mm	380
Internal depth Profondità Interna	mm	410
Insulation thickness Spessore pannelli	mm	60
Climatic class Classe climatica	Ť	
Chilling yield +90°C / +3°C within 90' Resa +90°C / +3°C entro 90'	kg/cycle	18
Freezing yield +90°C / -18°C within 240' Resa +90°C / -18°C entro 240'	kg/cycle	12
Capacity GN2/1 or EN2 trays Pitch 45 mm Capienza teglie GN2/1 o EN2 passo 45mm	in*	6
Capacity GN2/1 or EN2 trays Pitch 60 mm Capienza teglie GN2/1 o EN2 passo 60mm	·0*	5
Capacity GN2/1 or EN2 trays Pitch 75 mm Capienza teglie GN2/1 o EN2 passo 75mm	n*	4
Capacity gelato tubs 165x360h120 capaci- tà vaschette gelato 160x360h120	n*	6
Electric power supply Alimentazione elettrica	V/-/Hz	230/1/50
Max power consumption cooling (**) Assorbimento elettrico max (**)	w	1117
Max. absorbed current cooling (**) Corrente assorbita raffredd. max (**)		5,5
Max power consumption heating Assorbimento elettrico riscald, max	w	625
Max, absorbed current heating	۸	27
Refrigeration power (*) Potenza frigorifera (*)	w	1430
Heating power Potenza riscaldamento	w	500
Compressor Compressore	HP	ä
Refrigerant Refrigerante	gas	R404A
Refrigerant quantity Quantità refrigerante	8	1000
Packing dimensions (WxdxH) Dimensioni imballo	mm	850 x 780 x 1005
Volume	mð	0,66
Weigh net/gross Peso netto/lordo	kg	86/101
Noise level Livello rumorosità	dB(A)	< 70
(*) berrip, warp15*C terrip, carel, +40*C (**) terrip, warp15*C terrip, carel, +55*C		

Refrigeration power (*) Potenza frigorifera (*)	w	1430
Heating power Potenza riscaldamento	w	500
Compressor Compressore	HP	1
Refrigerant Refrigerante	gas	R404A
Refrigerant quantity Quantità refrigerante	g	1000
Packing dimensions (WxdxH) Dimensioni imballo	mm	850 x 780 x 1005
Volume Volume	m ³	0,66
Weigh net/gross Peso netto/lordo	kg	86 / 101
Noise level Livello rumorosità	dB(A)	< 70
(*) temp. evap. –15°C temp. cond. +40°C (**) temp. evap. –15°C temp. cond. +55°C		

PERFORMANCE = 1.430 W (evap. -15 / cond. +40°C)

TEST CONDITIONS: @220V50Hz		ASI Fan	HRAE32	2 (Condensing temperature 35°C (+99°F))					
Evaporating temperature	Cod	oling capao	city	Power consumption	Current consumption	Gas flow rate	EFF	ICIENCY R	ATE
		+/- 5%		+/- 5%	+/- 5%	+/- 5%		+/-7%	
°C (°F)	[Btu/h]	[kcal/h]	[W]	[\V\]	[A]	[kg/h]	[Btu/Wh]	[kcal/Wh]	[W/W]
-40 (-40)	1413	356	414	437	3.71	9.50	3.24	0.82	0.95
-35 (-31)	2000	504	586	509	3.91	13.49	3.92	0.99	1.15
-30 (-22)	2674	674	784	578	4.12	18.09	4.61	1.16	1.35
-25 (-13)	3432	865	1006	648	4.35	23.32	5.30	1.33	1.55
-20 (- 4)	4270	1076	1251	717	4.59	29.16	5.96	1.50	1.75
-15 () 5)	5185	1307	1519	789	4.85	35.62	6.58	1.66	1.93
-10 (+14)	6173	1555	1809	863	5.13	42.70	7.15	1.80	2.10
TEST CONDITIONS: @220V50Hz		AS Far	HRAE32		(C	ondensing <mark>t</mark> e	mperature 4	45°C (+113°F))
Evaporating temperature	Co	oling capa	city	Power consumption	Current consumption	Gas flow rate	EFF	ICIENCY R	ATE
		+/- 5%		+/- 5%	+/- 5%	+/- 5%		+/- 7%	
°C (°F)	[Btu/h]	[kcal/h]	[\V]	[\VV]	[A]	[kg/h]	[Btu/Wh]	[kcal/Wh]	[W/W]
-40 (-40)	1285	324	377	437	3.70	8.62	2.95	0.74	0.86
-35 (-31)	1815	457	532	518	3.92	12.21	3.50	0.88	1.03
-30 (-22)	2450	618	718	600	4.16	16.55	4.08	1.03	1.20
-25 (-13)	3189	804	935	684	4.44	21.63	4.66	1.17	1.37
-20 (- 4)	4028	1015	1180	770	4.75	27.45	5.23	1.32	1.53
-15 (• 5)	4962	1250	1454	859	5.09	34.02	5.78	1.46	1.69
-10 (+14)	5988	1509	1755	954	5.46	41.34	6.28	1.58	1.84

PERFORMANCE = 1.519 W (evap. -15 / cond. +35°C) PERFORMANCE = 1.454 W (evap. -15 / cond. +45°C)

SO WITH EVAP. +40°C THE PERFORMANCE IS BETWEEN 1.454 – 1.519 W MORE THAN FRIULINOX

UNIQUE SELLING POINTS

 INTERNAL AIR CIRCULATION INDIRECTLY ON THE PRODUCT

 REMOVABLE RACKS WITHOUT TOOLS
 FLEXIBILITY GN 1/1 OR 60X40

CORE PROBE FITTED AS STANDARD

 ROUNDED INTERNAL CORNERS
 EASY CLEANING

UNIQUE SELLING POINTS

- MANUFACTURED IN STAINLESS STEEL AISI 304
- CFC AND HCFC FREE ENVIROMENT FRIENDLY INSULATION MINIMUM 65mm THICKNESS
- SELF CLOSING DOOR
- PERFECT DOOR CLOSURE THANKS TO NEW PROFILE GASKETS
- AUTOMATIC HOT GAS DEFROST ONLY WHEN NECESSARY AND DURING CONSERVATION CYCLE (MANUAL ON 4 AND 5 TRAYS MODELS)
- EVAPORATOR WITH LARGE HEAT EXCHANGE SURFACE AND CATAPHORESIS TREATED AGAINST CORROSION

SPEED VARIATION FANS

NEW GENERATION ELECTRONIC SPEED VARIATION FANS, WITH INNOVATIVE DESIGN AND MATERIALS:

- UNIFORM VENTILATION THROUGHOUT THE CHAMBER
- FAN BLOCKING SYSTEM WHICH PREVENTS COLD AIR FROM LEAVING THE CHAMBER WHEN THE DOOR IS OPENED
- LESSER ENERGY CONSUMPTION
- PREVENTING FOOD DRYING
- PRESERVATION OF DELICATE PRODUCTS

INTERNAL SPACE

664

530

ALL ILSA BLAST CHILLERS CAN ACCEPT GN 1/1 CONTAINERS WITH 65 MM DEPTH

67

MAX H=65

DISTANCE BETWEEN TRAYS:

- 67 MM 14 Trays
- 70 MM -- 5 Trays
- 74 MM TABLE
- 75 MM -- 10 Trays

INTERNAL SPACE

MultiFresh®

More than Fresh.

IRINOX

MF 25.1

Organize your production and processes with flexibility 24 hours a day.

TRAY CAPACITY NR.

tray height 65/60 mm4 (GN 1/1 o 600x400 mm)tray height 40 mm5 (GN 1/1 o 600x400 mm)tray height 20 mm8 (GN 1/1 o 600x400 mm)

YIELD PER CYCLE		DIMENSIONS	
from +90°C to +3°C	25 kg	width	790 mm
from +90°C to -18°C	25 kg	depth	771 mm
		height	870 mm
TRAY CAPACITY NR.		weight	115 kg
tray height 65/60 mm	4 (GN 1/1 o 600x400 mm)		
tray height 40 mm	5 (GN 1/1 o 600x400 mm)	ELECTRICAL DATA	
tray height 20 mm	8 (GN 1/1 o 600x400 mm)	max absorbed power	1,2 kW
		max absorbed current	6,5 A
		voltage	230 V-50Hz (1N+PE)

INTERNAL SPACE

Capacity GN2/1 or EN2 trays Pitch 45 mm Capienza teglie GN2/1 o EN2 passo 45mm	n°	6
Capacity GN2/1 or EN2 trays Pitch 60 mm Capienza teglie GN2/1 o EN2 passo 60mm	n°	5
Capacity GN2/1 or EN2 trays Pitch 75 mm Capienza teglie GN2/1 o EN2 passo 75mm	'n°	4

NF – TEST FEATURES

- GN ½ CONTAINERS
- 1,8 Kg OF MASHED PATATOES EACH CONTAINER FILLED FOR 45 MM
- CHILLING:
 - + 63 °C → + 10 °C IN 110 MINUTS 1,8 Kg x 10 = 18 Kg (NO MORE SPACE)
- FREEZING:
 - + 63 °C → 18 °C IN 270 MINUTES 1,8 Kg x 6 = 10,8 Kg

DIN – TEST FEATURES

DIN 18872-5

Normen

Eindeutige Festlegung

Seit Jahren herrschl Unklarheit über die Festlegung von Temperaturen und Abkühlzeiten bei Schnellkühlern und Schockfrostern. Mit der Überarbeitung der DIN 18872-5 (Schnellkühler/Schockfroster) wird es nunmehr eine eindeutige Festlegung geben. Die DIN 10508 (Temperaturen) wird folgen.

DIN Schnellkühler/Schockfroster

Dafür hat Manfred Schwarz von Asskühl 70°C) abgefüllt und abgedeckelt. Die lange gekämpft - und nun erfolgreich und Probenbehälter sind in die CN Einschübe federführend bei der Abfassung der neu- (GN 1/1: 2 Stück, GN 2/1: 4 Stück) proen Schnellkühler- und Schockfrösternorm Etage einzusetzen. Der Schienenabstand mitgewirkt. In einem Beitrag in Gastro- sollte mindestens 70 Millimeter betragen. Spiegel (siche GS 09-2009, S. 12-13) hatte Die Schnellkühler sind - ohne Vorküh-Schwarz dargelegt, wie problematisch die lung - bei Raumtemperatur einzuschal-Bestimmung des Kühlprozesses im Sinne Ien. Jeder Probebehälter ist mit einer der bisherigen Normen war, da es kein Sonde zur Messung der Kerntemperatur gültiges Messverfahren gab, das den Kühl- in der Probenmitte angeordnet, auszustat prozess genau beschrieb. Das ändert sich ten. nun. Die offiziellen Norm-Drucksachen

gibt es ausschließlich beim Beuth-Verlag Maximal 90 Minuten Abkühlzeit wir zifteren hier im Gespräch mit Man-fred Schwarz auszugsweise aus der Norm. Kerntemperatur in den Probebehültern

Genaue Füllparameter

mm) bis zu 45 Millimeter

Füllhöhe mit einem Ge-

wicht von 1,8 Ki-

logramm heiß

auf eine Umgebungstemperatur von 25 °C und eine Luftfeuchte von 65 Prozent bezie tern auf 3 °C Kerntemperatur abgekühlt ben. Die steckerfertigen Schnellkühler und sind, bei einem maximalen Zeitverlauf Schockfroster sind dabei für eine maximale von bis zu 90 Minuten (nach DIN 10508), Umgebungstemperatur von 32 °C auszule- ergibt die Füllmenge (kg) der Probenbegen. Die Abkühlleistung bei Schnellkühlern hälter und ihre Anzahl die nachgewieist nun nach definierten Voraussetzungen sene Abkühlleistung der Schnellkühler in zu ermitteln und zu prüfen.

63 °C erreicht hat, bei geschlossener Tür Genaue Füllparameter sowie bei laufendem Kühlaggregat und Wichtig ist, dass sich die Anforderungen laufenden Verdampferventilatoren im Inkg/Zyklus, Das Referenzprodukt ist Kartoffelpü- In ähnlicher Weise ist das Verfahren für

ree aus Trockenmasse aufgerührt: 877 Schockfroster beschriehen. Hier müssen Gramm Wasser, 115 Gramm Püree-Flo- lediglich in der ersten Phase der Abkühcken-Trockenmasse sowie acht Gramm lung von 90 Minuten auf 3°C weitere Salz. Das Püree wird in GN Behältern 180 Minuten zum Frieren auf 18°C ge-1/2-65 (55) Millimeter (325 x 265 x 65 währt worden. Diese Ausführung ist in der Sitzung des HKI-Normaus schuss (NHL) im Novem.

> ber verabschiedet worden und geht somit beim DIN in Druck.

GN 1/2 CONTAINERS, DEPTH 65 MM

 1,8 Kg OF MASHED PATATOES EACH **CONTAINER FILLED FOR 45 MM**

CHILLING: + 63 °C \rightarrow + 3 °C IN 90 MINUTS 1,8 Kg x 10 = 18 Kg (NO MORE **SPACE**)

FREEZING: + 63 °C → - 18 °C IN 270 MINUTES 1,8 Kg x 6 = 10,8 Kg

ACCESSORIES

- UV LAMP OR OZON GENERATOR
- HEATED CORE PROBE

- USB FOR DATA DOWNLOADING
- SPECIAL RACKS FOR PASTRY

USB CONNECTION – EVOLVE

- DOWNLOAD AND UPLOAD
 OF RECIPES
- DOWNLOAD AND UPLOAD
 OF THE CONFIGURATION
 PARAMETERS
- DOWNLOAD OF THE INFORMATION CONCERNING THE HACCP RECORDS

USB

RECIPES DOWNLOAD

RECIPES UPLOAD

PARAMETERS DOWNLOAD

PARAMETERS UPLOAD

HACCP DATA DOWNLOAD

HACCP RECORDING - USB

- POSSIBLE ON NEOS AND EVOLVE BLAST CHILLERS
- NO PAPER PRINTERS NECESSARY
- DIRECT DOWNLOAD ON PEN DRIVE TROUGHT USB
 CONNECTION
- NO EXPENSIVE AND DEDICATED SOFTWARE TO READ PEN
 DRIVE
- CONVERT FILE TO EXCEL DATA

HACCP RECORDING - USB

	Cabinet Probe	Core Probe	Condenser Probe
	°C	°C	
8:26	15,2	19,7	25,7
8:27	6,7	19,3	30,8
8:28	0	18,3	31,7
8:29	-5,6	16,7	31,7
8:30	-10,1	14,8	31,3
8:31	-13,6	12,6	30,4
8:32	-16,5	10,2	29,3
8:33	-19,1	7,9	28,6
8:34	-21,2	5,5	27,8
8:35	-23	3,2	27,2
8:36	-24,6	1	26,7
8:37	-26	-1,2	26,3
8:38	-27,2	-3,2	25,8
8:39	-28,3	-5,3	25,3
8:40	-29,1	-7,2	25,2
8:41	-30,1	-9	24,7
8:42	-30,8	-10,8	24,4
8:43	-31,6	-12,4	24,1
8:44	-32,3	-13,8	23,9
8:45	-32,8	-15,3	23,9
8:46	-33,5	-16,6	23,6
8:47	-34	-17,8	23,3

- ALL IMPORTANT VALUES:
- TEMPERATURE
- HACCP ALARMS
- ON/OFF COMPRESSOR
- CONDENSER FAN
 ON/OFF
- DOOR HEATER
- TYPE OF PHASE

HACCP RECORDING - USB

OPERATING WITH EVOLVE OR NEOS BLAST CHILLER/FREEZER

EVOLVE

BLAST CHILLING OR FREEZING

EXAMPLE : BLAST CHILLING

This cycle allows a reduction in temperature in the product core from +90°C to +3°C as quickly as possible and within a MAX time of 90 minutes. The cycle ends when the value +3°C, read by the core probe, is reached and the machine switches automatically to preservation.

ADVANCED SETTINGS

It is possible to change the cell temperature and the speed of the fans during the conservation phase.

After pressing "START" a "SUMMARY" will appear; this allows to check the settings and eventually change them. It is possible to save or proceed with the cycle.

SCREENSHOT DURING OPERATING CYCLE

Pressing on the area in the display will show the temperatures detected by the various probes, the state of inputs / outputs an the alarms stored by the system.

To abort the current cycle, press for three seconds the area

SPECIAL CYCLES

<	SPEC	CIALS	
Fish Fish sanitantion	Dry Drying	Defrosting	Ice cream harden
Sterilization	Tha Thawing	Proofing	Slow cook

- 1. Fish sanitization
- 2. Drying
- 3. Manual defrosting
- 4. Ice cream hardening
- 5. Sterilization
- 6. Thawing (optional)
- 7. Proving (optional)
- 8. Slow cooking (optional)

SPECIAL CYCLES

Fish sanitation: it guarantees the elimination of the Anisakis parasite

Drying: this function will run a cycle of forced ventilation. A dry chamber and evaporator will increase the performance

Defrosting: The ice formed on the evaporator, may compromise the proper operation of the equipment. To restore the full functionality it is necessary to perform a defrosting cycle.

Hardening: as soon as it comes out of the thickener, the ice cream is at a temperature of -8°/-10°C. At this point, it can either be displayed or placed in the hardener which lowers the temperature to -20°C, decreasing the amount of water not yet frozen that would make the ice cream lose its creaminess and volume.

SPECIAL CYCLES

Sterilization: For a correct hygiene of the machine it is recommended to perform the disinfection of the cell. Ozone generator or UV lamp as built-in or removable ionizer are available.

Thawing (optional): Also known as regeneration, the food that has been blast chilled or frozen will be rapidly and delicately brought back to a temperature at which it can be consumed or cooked.

Proving (optional): A process that allows you to check, block and manage the proving of dough.

Slow cooking (optional): Also known as cooking at a low temperature around 70-75 °C; automatically after this cycle is possible to activate a positive or negative chilling.

STORING RECIPES

WITH THIS ICON YOU CAN STORE YOUR OWN RECIPES AT THE END OF A CYCLE OR WHILE SETTING A NEW CYCLE

<	SAVE R	ECIPES	
P01 P02 P03 P04 P05	MY RECIPES 01 MY RECIPES 02 MY RECIPES 03 MY RECIPES 04 MY RECIPES 05	P06 P07 P08 P09 P10	MY RECIPES 06 MY RECIPES 07 MY RECIPES 08 MY RECIPES 09 MY RECIPES 10
	\sim		\wedge

Paella Valenc_								
	А	В	С	D	E	F	G	
	Н	Ι	J	К	L	М	N	
	0	Р	Q	R	S	Т	U	
	ۍ	V	W	Х	Y	Z		
	.?1	123			<	×		
				\checkmark				

AND ASSIGN THEM A NAME

